

 Navigation

 	multicast 0.1.1alpha1 documentation

Asynchronous multicast UDP

	Basic Architecture

	Multicasting
	Simple multicast

	Multicasters

	Multicast listeners
	Simple multicast monitoring

	Multicast listener

	Example of multicast listener

	Epoll object polling
	Simple polling

	Poller objects

Basic Architecture

This module provides classes and functions for asynchronous multicast UDP clients and servers.

The multicast module has a default Poller object in the multicast._defaultPoller attribute. The convenience funtions the module exposes use the default Poller instance.

By default, instances of multicast classes register themselves with the default Poller object. To implement custom polling setups, instantiate other Poller objects and manually register the Multicaster and MulticastListener instances.

Multicasting

Simple multicast

The simplest way to send a packet to a multicast group is by using the multicast.sendto() function.

	
multicast.sendto(packets, ip='224.0.42.42', port=4242, ttl=1)

	Send packets to the multicast group at ip on port.

The packet is sent with a TTL of 1 by default; see below for suggested
TTL values:

	same host
	0

	same subnet
	1

	same site
	32

	same region
	64

	same continent
	128

	unrestricted
	255

Multicasters

	
class multicast.Multicaster(ip='224.0.42.42', port=4242, ttl=1)

	Make sub-classes of this class iterable and yield packets to multicast.

The TTL of packets sent by the multicaster defaults to 1 (ie. the
local segment). See the table below for suggested TTL values.

	same host
	0

	same subnet
	1

	same site
	32

	same region
	64

	same continent
	128

	unrestricted
	255

Multicast listeners

Simple multicast monitoring

	
multicast.listen(packet_handler, ip='224.0.42.42', port=4242, mtu=4096, limit=None)

	Calls a packet_handler with a packet and an addr argument each time
a packet is received by the multicast group at ip on port.

Note

This function does not return until the packet_handler returns non-False

mtu is the maximum packet size in bytes.

>>> from multicast import listen, sendto, poll
>>> listener = listen()
>>> sendto('test')
>>> poll()
>>> listener.next()
'test'

Warning

Clients of this function must call multicast.poll() after each call
to the returned generator’s next() method.

Failure to do so will result in no packets being delivered.

Multicast listener

	
class multicast.MulticastListener(filter=None, ip='224.0.42.42', port=4242, mtu=4096)

	MulticastListeners join a multicast IP group and call their
handle_packet() method when packets are sent to the group.

Packets are read up to mtu bytes of each packet, and only listen for
packets that match filter.

filter can be a callable filter(packet, addr) that returns True
if the packet should be accepted or False to drop the packet; or it
can be a regular expression, in which case it is compiled and packets
that match it are accepted.

	
handle_packet(packet, addr)

	Implemented by sub-classes as a callback when packets matching the
filter are received.

Example of multicast listener

Listen for a single request and quit:

>>> from datetime import datetime
>>> from multicast import sendto, poll, MulticastListener
>>> class Printer(MulticastListener):
... filter = lambda packet, addr: True
... def handle_packet(self, packet, addr):
... print packet
... return True # Stop listening
...
>>> Printer()
>>> sendto('test')
>>> poll()
'testa'

Epoll object polling

Simple polling

The multicast module provides four convenience functions that mirror the
methods on Poller instances. These functions operate on the default
Poller instance and provide a simple way to control polling.

Note

References to self in this section refer to the default Poller.

	
multicast.register(self, fd, flags=0)

	Register a file descriptor object with the Poller. Future calls to
poll() will check whether the file descriptor has any
pending I/O events. fd must be an object that implements a fileno()
method that returns an integer. It must also support implement the following
methods:

	handle_read()

	To indicate that it wants to receive EPOLLIN and EPOLLPRI events

	handle_write()

	To indicate that it wants to receive EPOLLOUT events

	
multicast.unregister(self, fd)

	Remove a tracked file descriptor

	
multicast.poll(self, timeout=0)

	Polls the registered set of file descriptors for events.

When an event is detected on a file descriptor, the corresponding
handle_<event>() method is called on the registered object.

	
multicast.loop(self, timeout=0, interval=0)

	Enter a polling loop that terminates when self.polling is False.

The interval parameter indicates how long to sleep between polls. The
timeout parameter is passed to the poll call. Both are expressed in
seconds. interval and timeout both default to 0.

Poller objects

For more fine-grained control, or for implementing multiple polling loops, multiple
instances of the Poller class can be created.

	
class multicast.Poller

	Poller objects wrap select.epoll() epoll objects [http://linux.die.net/man/4/epoll].

They implement a loop() function that loops and sleeps polling the underlying epoll
object for events on registered file descriptors.

	
loop(timeout=0, interval=0)

	Enter a polling loop that terminates when self.polling is False.

The interval parameter indicates how long to sleep between polls. The
timeout parameter is passed to the poll call. Both are expressed in
seconds. interval and timeout both default to 0.

	
poll(timeout=0)

	Polls the registered set of file descriptors for events.

When an event is detected on a file descriptor, the corresponding
handle_<event>() method is called on the registered object.

	
register(fd, flags=0)

	Register a file descriptor object with the Poller. Future calls to
poll() will check whether the file descriptor has any
pending I/O events. fd must be an object that implements a fileno()
method that returns an integer. It must also support implement the following
methods:

	handle_read()

	To indicate that it wants to receive EPOLLIN and EPOLLPRI events

	handle_write()

	To indicate that it wants to receive EPOLLOUT events

	
unregister(fd)

	Remove a tracked file descriptor

 Copyright 2011, Iain Lowe <iain.lowe@gmail.com>.

 Brought to you by Read the Docs

 	latest

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		multicast 0.1.1alpha1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Iain Lowe <iain.lowe@gmail.com>.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

